Perceptual Gap Detection Is Mediated by Gap Termination Responses in Auditory Cortex

نویسندگان

  • Aldis P. Weible
  • Alexandra K. Moore
  • Christine Liu
  • Leah DeBlander
  • Haiyan Wu
  • Clifford Kentros
  • Michael Wehr
چکیده

BACKGROUND Understanding speech in the presence of background noise often becomes increasingly difficult with age. These age-related speech processing deficits reflect impairments in temporal acuity. Gap detection is a model for temporal acuity in speech processing in which a gap inserted in white noise acts as a cue that attenuates subsequent startle responses. Lesion studies have shown that auditory cortex is necessary for the detection of brief gaps, and auditory cortical neurons respond to the end of the gap with a characteristic burst of spikes called the gap termination response (GTR). However, it remains unknown whether and how the GTR plays a causal role in gap detection. We tested this by optogenetically suppressing the activity of somatostatin- or parvalbumin-expressing inhibitory interneurons, or CaMKII-expressing excitatory neurons, in auditory cortex of behaving mice during specific epochs of a gap detection protocol. RESULTS Suppressing interneuron activity during the postgap interval enhanced gap detection. Suppressing excitatory cells during this interval attenuated gap detection. Suppressing activity preceding the gap had the opposite behavioral effects, whereas prolonged suppression across both intervals had no effect on gap detection. CONCLUSIONS In addition to confirming cortical involvement, we demonstrate here for the first time a causal relationship between postgap neural activity and perceptual gap detection. Furthermore, our results suggest that gap detection involves an ongoing comparison of pre- and postgap spiking activity. Finally, we propose a simple yet biologically plausible neural circuit that reproduces each of these neural and behavioral results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auditory cortex is required for fear potentiation of gap detection.

Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally...

متن کامل

Neural correlates of gap detection in three auditory cortical fields in the Cat.

Neural correlates of gap detection in three auditory cortical fields in the cat. Mimimum detectable gaps in noise in humans are independent of the position of the gap, whereas in cat primary auditory cortex (AI) they are position dependent. The position dependence in other cortical areas is not known and may resolve this contrast. This study presents minimum detectable gap-in-noise values for w...

متن کامل

Auditory temporal acuity probed with cochlear implant stimulation and cortical recording.

Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investig...

متن کامل

Middle latency auditory-evoked fields reflect psychoacoustic gap detection thresholds in human listeners.

The resolution of the temporal processing in the primary auditory cortex (PAC) was studied in human listeners by using temporal gaps of 3, 6, 10, and 30 ms inserted in 100-ms noise bursts. Middle latency auditory-evoked fields (MAEFs) were recorded and evaluated by spatio-temporal source analysis. The dependency of the neurophysiological activation at about 37 ms (P37m) on the temporal position...

متن کامل

Neural responses in primary auditory cortex mimic psychophysical, across-frequency-channel, gap-detection thresholds.

Responses of single- and multi-units in primary auditory cortex were recorded for gap-in-noise stimuli for different durations of the leading noise burst. Both firing rate and inter-spike interval representations were evaluated. The minimum detectable gap decreased in exponential fashion with the duration of the leading burst to reach an asymptote for durations of 100 ms. Despite the fact that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014